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We investigate the apparent paradox, as exemplified by the well- 
known Saltzman test problem, of multidimensional lagrangian codes 
experiencing mesh tangling when computing one-dimensional irrota- 
tional flows. We demonstrate that the cause is the generation of 
spurious vorticity, or vorticity error, by a nonuniform mesh. Based on 
this, we investigate two methods of constructing improved lagrangian 
vertex velocities by removing, or filtering out, this spurious vorticity, 
rather than by the more common practice of introducing artificial 
viscosity. The first method reconstructs the velocity from the known 
flow divergence and from the true vorticity computed by means of a 
transport equation. The second method, which is much simpler and 
more efficient, subtracts a divergence-free correction from the velocity, 
such that the resulting velocity possesses the correct vorticity. We 
then successfully apply this method to solve a two-dimensional 
shock refraction problem, a problem which exhibits nonzero intrinsic 
vorticity. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

We are interested in computational hydrodynamics 
methods where the mesh is not stationary, but may move 
with a velocity that is computed as a function of time and 
position in the course of the calculation. Such methods, 
therefore, imply the use of distorted or nonuniform meshes. 
Particular examples include lagrangian methods, or ALE 
(arbitrary Lagrangian-Eulerian) methods which contain a 
lagrangian phase. 

In lagrangian hydrodynamics methods, a computational 
cell moves with the flow velocity. In practice, this means 
that the cell vertices move with a computed velocity, the cell 
faces being uniquely specified by the vertex positions. It is 
well known that most multidimensional lagrangian calcula- 
tions can only be continued for a finite time before the mesh 
is destroyed by “tangling,” or crossing of mesh lines. This is 
to be expected because in the presence of shear and rotation 

a lagrangian fluid element will eventually become so 
stretched and distorted that it may no longer be adequately 
represented by a discrete computational cell, such as 
one based on simple polygonal and polyhedral elements. 
More frequently, however, a premature tangling failure is 
caused by numerical errors. There are many types of 
numerical errors that may affect mesh motion. One type is 
associated with the presence of a null space of the discrete 
operators (the so-called “hourglass,” “checkerboard,” or 
“herringbone” modes). These errors have received much 
attention in the literature and we will not be concerned 
with them here. Another type is associated with the use or 
presence of an irregular or distorted mesh; this type of error 
is relatively poorly understood and it is this type of error 
with which we will be concerned. 

On the other hand, lagrangian methods avoid a source of 
numerical error due to the advection terms in the conserva- 
tion equations. For this reason, lagrangian methods are 
frequently preferred in one-dimensional computations 
where mesh distortion plays no role. Thus, in practical 
multidimensional applications it is often the trade-off 
between these two sources of error that determines the 
success of a lagrangian calculation. The ALE method 
computations attempt a compromise by permitting some 
freedom in mesh movement but, at the same time, not 
allowing the mesh to become overly distorted. it is clear that 
a reduction in the mesh-distortion error would not only 
extend the scope of lagrangian calculations but improve the 
accuracy of the ALE computations as well. 

The problem that we wish to address is related to an 
aspect of the error introduced by the use of nonuniform, 
irregular meshes. A longstanding paradox in lagrangian 
hydrodynamics concerns the computation of irrotational 
flows. A lagrangian computation of a flow with zero vor- 
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ticity is expected to be particularly long lasting and resistant 
to mesh tangling. In particular, a one-dimensional flow, 
inherently irrotational, should be free from mesh tangling. 
Nevertheless, it is found in practice that a one-dimensional 
flow, computed using a nonuniform two-dimensional mesh, 
will usually develop increasing mesh distortion and will 
eventually fail due to mesh tangling. This is best 
demonstrated by a frequently used and widely known test 
problem, called the Saltzman problem [l]. This problem 
concerns a strong one-dimensional shock wave, propagat- 
ing in an initially specified, nonuniform two-dimensional 
plane mesh. Most lagrangian codes have difficulty with 
this test problem, particularly since deviations from the 
expected, one-dimensional behavior are so easy to detect. 
The standard treatment for such mesh difficulties involves 
introducing artificial viscosities [2, 33, which unfortunately 
have the effect of preventing or reducing mesh distortion 
whether that distortion is legitimate or not. 

Treating the Saltzman problem as a paradigm, we 
investigate its pathologies in some detail. We demonstrate 
that the difficulty in computing accurate lagrangian vertex 
velocities is caused by a spurious vorticity generated in the 
presence of an irregular mesh. We further argue that there 
exists a mechanism for “healing” errors in the divergence of 
velocity, while errors in vorticity are merely transported and 
persist in time, thereby accounting for the above-mentioned 
mesh distortion. Thus, we take the approach of filtering out, 
or removing, the effects of the spurious vorticity, while 
retaining the effects of the real or intrinsic vorticity, if 
present. This, incidentally, highlights a difficulty with the 
Saltzman test problem. Any correction method which 
damps or removes vorticity will perform well on this test 
problem, which should have zero vorticity, but may not 
necessarily perform well on other problems where it is 
important to retain the intrinsic vorticity. 

In this paper we apply these ideas in the context of a cell- 
centered mesh code. The same ideas may be applied to 
staggered meshes, a fact that is best illustrated by the “Turn 
function and vorticity” method of O’Rourke [4], a work 
that is similar in spirit to ours, although greatly different in 
purpose and method. 

2. DESCRIPTION OF THE PROBLEM 

2.1. The CAVEAT Code 

As the vehicle for our study we have chosen to use the 
CAVEAT code [S], primarily for reasons of convenience, 
and because we believe that the choice of a code is not 
important since the problem under study is quite generic to 
many lagrangian formulations. CAVEAT is a two-dimen- 
sional, ALE-method code, based on an arbitrary quadri- 
lateral mesh. In the ALE method, the computational cycle 
is composed of a lagrangian step, followed by a remapping 

(or advection) step, in which the quantities calculated in the 
lagrangian step are remapped or transferred from the 
lagrangian mesh to an arbitrarily specified mesh. Here we 
are interested only in the lagrangian step. The lagrangian 
step is based on the Godunov method, which implies that all 
conserved quantities, including momentum, and hence cell 
velocity, are cell-centered, and that cell-face quantities, 
including a face-normal component of velocity, are 
available from the solution of a Riemann problem (in this 
case, an approximate solution) at each cell face. 

Thus, we have available a cell-centered average velocity u, 
a face-centered normal component n. u*, and we need to 
determine a vertex velocity v’ (see Fig. 1). Guided by the 
equation for the rate of change of a lagrangian volume 
element: 

dV 
z=jV.udr=jn.u*dS, 

where V is the volume of a moving lagrangian element and 
the integration is over the surface of the element, we are led 
to choose the Riemann normal component of velocity n. u* 
at a face as most appropriate for defining the vertex 
velocities. There are many possibilities for extracting the 
vertex velocities. A simple algorithm might be constructed 
by requiring that the vertex velocity, projected in the direc- 
tion of a face normal, should equal the Riemann velocity on 
that face [ 11. In CAVEAT we use a weighted least squares 
algorithm, based on the fact that the problem is overdeter- 
mined in the typical case of four faces meeting at a vertex. 
Setting wi = n . u*, where i is the index for faces meeting at 
a vertexj, we minimize 

C Wi[nj.vJI - wi12 

with respect to the unknown components of the vector v,‘, 
where Wi is a weight, defined on each face (currently taken 
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FIG. 1. Velocities associated with a cell vertex. 
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to be the average of the cell densities on each side of the 
face). This yields a set of simple linear equations on each 
face which are solved to obtain the vertex velocities vj. This 
algorithm is independent of the number of faces at a vertex 
(i > 2), is easily extendible to arbitrary dimensionality, 
provides a degree of smoothing, is simple and efficient, and 
has proven to be reliable in practice. It has the obvious fault 
that it reproduces only constant velocity fields exactly and 
therefore is at best first-order. For example, for the case of 
face normal velocities derived from a single component 
velocity field the algorithm is capable of generating addi- 
tional spurious components in the vertex velocity field. 

2.2. The Saltzman Test Problem 

The Saltzman test problem [l] tests the ability of a code 
to retain a one-dimensional solution to a one-dimensional 
problem on a nonuniform two-dimensional mesh. The 
problem consists of a rectangular box or cylindrical whose 
walls form reflective boundaries and whose left-hand side 
wall acts as a piston, initially driving a strong shock wave 
towards the right. Since the upper and lower boundaries are 
reflective, and the initial conditions are independent of the 
vertical coordinate direction, the problem is expected to be 
one-dimensional, independent of the width of the box or the 
diameter of the cylinder. As time progresses, the shock wave 
undergoes a series of reflections from both the right- and 
left-hand walls. 

The one-dimensional symmetry is broken by the mesh. 
The initial mesh is 10 cells high in the y-direction and 100 
cells wide in the x-direction and is defined by 

7T(i- 1) 
x,=(i-l)*fLx+(ll--j)*dy*sin- 

100 ’ 
I 

y,i= (j- l)* dy’, 
1 

i= 1, 2, . . . . 101; j= 1,2, . ..) 11, 

where dx = dv = 0.01. This initial mesh is displayed in Fig. 2. 
The working fluid is assumed to be an ideal gas with y = $, 
compressed by a piston moving to the right with a velocity 
of 1. The initial conditions involve a stationary gas with a 
density of 1 and an internal energy of 10P4. The expected 
post shock conditions are given by a pressure of 1.333, a 
density of 4.0, an internal energy of 0.5, and a shock speed 

C; 0.’ Oi 0’ t4 6.5 C.6 0.7 08 C9 1’0 

FIG. 2. Initial mesh for the Saltzman test problem (compressed 
horizontal scale-the horizontal and vertical scales in all figures are 
labelled in nondimensional units). 

of 1.333. The computation may be carried out in plane or 
cylindrical geometry, with the x-axis as the axis of cylindri- 
cal symmetry. 

2.3. The Standard Result 

Figures 3 and 4 illustrate the lagrangian mesh and the 
density contours obtained with CAVEAT in plane geometry 
at times oft = 0.5 and 0.7. The problem fails due to excessive 
mesh distortion at a time of about 0.8, shortly after the first 
shock reflection. Similar results are obtained with other 
codes [l, 31. 

It is obvious that the solution is not one-dimensional. The 
most striking feature observed in the results is the skewed 
and rotated nature of the lagrangian mesh, contrary to 
expectations. Since we know that the same problem com- 
puted on an initially orthogonal, undistorted mesh remains 
perfectly one-dimensional, it is clear that the cause of this 
abnormal behavior is the initial mesh distortion. On the 
other hand, the density contours are surprisingly close to 
the expected result, a uniform density behind the shock, in 
spite of the highly distorted mesh. 

The nature of the distortion of the mesh suggests that it 
arises as a result of the presence of vorticity in the vertex 
velocity field. The density, on the other hand, is closely 
related to the lagrangian cell volume, and therefore to 
the divergence of the velocity field. Examining these two 
quantities, the vorticity and divergence, by themselves is not 
very enlightening, however. In the following section we look 
at them from a somewhat different perspective. 

2.4. The Volume and Skewness Integrals 

We wish to display and examine quantities that are 
directly related to the divergence and vorticity and which, at 
the same time, take account of the fact that the effects of 
divergence and vorticity, being intimately connected to the 
mesh velocity, are integrated or accumulated as a function 
of time. For this purpose we choose to use the lagrangian 
cell volume to represent the effects of divergence, and we 
define an analogous quantity to represent the effects of 
vorticity, which we call the cell skewness. 

Recalling that the rate of change of the volume V of a 
lagrangian element is given by the equation 

where dt is a differential volume element and dS is a corre- 
sponding surface element, we define a skewness integral by 
the analogous equation 
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FIG. 3. Lagrangian mesh, velocity vectors, and density contours for the Saltzman problem obtained with the standard CAVEAT code, at time t = 0.5. 
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FIG. 4. Lagrangian mesh, velocity vectors, and density contours for the Saltzman problem, obtained with the standard CAVEAT code, at time 
r = 0.7. 
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Thus, we have two quantities, V and a, which are directly where dl is a vector differential length tangent to the cell 
related to the divergence and the vorticity of the lagrangian boundary. 
velocity field, respectively, and at the same time are quan- We integrate Eq. (2.1) forward in time to obtain the 
tities integrated with respect to time. In the plane two- quantity Q. There is no need to similarly integrate the equa- 
dimensional case the equation for the skewness can be con- tion for the cell volume since the equation can be shown to 
siderably simplified. Writing ti = kQ, where k is the unit be an exact differential and so V may be obtained directly 
vector normal to the plane and Q is the magnitude of the from vertex coordinates. The cell volume, normalized by the 
skewness vector, we obtain initial cell volume, is displayed in Fig. 5 and the cell skew- 

ness Q is displayed in Fig. 6 for problem time t = 0.7. It is 
dQ 
-= v’.dl, 
dt 9 

quite remarkable to observe that the cell skewness L2 is large 
(2.1) m two bands near the top and bottom of the mesh, precisely 
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FIG. 5. The normalized lagrangian cell volume for the Sahnan test problem, obtained with the standard CAVEAT code, at time t = 0.7. 
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where the mesh is most distorted; it thus appears that the the subsequent mesh distortion. The divergence, however, 
skewness is closely related to the mesh distortion. The cell appears to be well behaved. Since vorticity and divergence 
volume, by contrast, is quite uniformly compressed behind are similar quantities, in the sense that both are derived 
the shock, exactly as one would expect for this problem. from velocity gradients, we must now account for the 

These results indicate that vorticity is being generated in apparent fact that spurious vorticity is being generated and 
the presence of a nonuniform mesh, and they provide strong persists in the flow, while the corresponding divergence 
evidence that this vorticity is primarily responsible for error is being suppressed. The final proof that the spurious 
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FIG. 6. The skewness integral for the Saltzman test problem, obtained with the standard CAVEAT code, at time c = 0.7. 
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vorticity is indeed responsible for the mesh distortion will be 
provided by the success of our method which subtracts out 
the effects of the spurious vorticity. 

3. ANALYSIS OF THE LAGRANGIAN VELOCITY FIELD 

3.1. The Role of Divergence and Vorticity 

Consider the divergence D = V II and vorticity o = V x u 
of a vector field u (in our case, the velocity field). According 
to the Hodge decomposition theorem [6] (or the 
Helmholtz theorem [7], in infinite space), a vector field can 
always be decomposed into a divergence-free component 
that contains all the vorticity and an irrotational compo- 
nent that contains all the divergence. Conversely, by a 
theorem stated in Arfken [ 81 a vector field can be uniquely 
determined from its divergence and vorticity, and its normal 
component on the boundary of any finite region. Clearly, 
then, vorticity and divergence describe important and com- 
plementary properties of the velocity field. The divergence, 
moreover, constitutes the source of lagrangian volume and 
isentropic pressure changes, according to 

do 
-=vv.u 
dt 

and 

dp z- - -pa ‘U, 

(3.1) 

(3.2) 

where v = l/p is the specific volume, p is the density, p is the 
pressure, and c is the speed of sound. 

Equations for the divergence and vorticity may be easily 
derived from the equations of motion. Consider the momen- 
tum equation from the set of Euler equations, 

du 
-hp. 

z= p (3.3) 

Differentiating this equation, we obtain 

dD xc -vu:vu-v~.vp-~v.vp (3.4) 

and 

do 
x= -wD+(wV)u-V;xVp -bxvp=4 . 

P I 

(3.5) 

These equations may be viewed as expressing the transport 
of divergence and vorticity, respectively, in the presence of 
sources (here we lump all the terms involving first-order 

derivatives and call them sources; strictly speaking, only the 
third term on the right-hand side of Eq. (3.5) may be con- 
sidered a vorticity source, because without it an initially 
irrotational flow will always remain irrotational) and 
second-order terms involving pressure. The second-order 
term on the right-hand side of the divergence equation plays 
a very important role, as discussed in the following section. 
The second-order term in the vorticity equation (shown in 
parentheses) is identically zero, except for discretizations on 
nonuniform meshes [9], when it may be considered as a 
numerical or spurious source of vorticity. Special discretiza- 
tions may be devised which do not have this error [lo]; 
however, this is not so in the typical case. Further, there 
may be other truncation errors in the discretizations of both 
Eqs. (3.4) and (3.5), particularly in the presence of a non- 
uniform mesh, that may be spurious sources of divergence 
and vorticity. 

This suggests that we may expect the spurious generation 
of both vorticity and divergence. This is in contrast to what 
we observed in Section 2; namely, while we found the 
existence of vorticity error, the divergence behaved in the 
expected manner, indicating that there was little if any 
divergence error. We address this question in the following 
section. 

3.2. Qualitative Behavior of the Equations 
of Vorticity and Divergence 

Let us consider the equation for the divergence, Eq. (3.4). 
Together with Eq. (3.2) it may be written as 

4 z = - pc2D, 

dD 
dr=s,-b.vp, 

P 

where Sd represents the source terms. Eliminating the 
divergence D, we obtain 

d ldp 

iii pc2 dt [ 1 -- = -s,+;v.vp, 
which we can recognize as a nonlinear wave equation for the 
pressure, representing the propagation of acoustic waves. 
Because of the relationship between pressure and divergence 
represented by Eq. (3.2), we may expect the divergence to 
also satisfy a similar if more complicated nonlinear wave 
equation. The vorticity equation, on the other hand, 
because of the lack of a corresponding second-order term, 
satisfies a simple transport equation 

do - 
x= s,, 
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where S, represents the vorticity sources. The above implies 
that in the absence of sources, disturbances in pressure or 
divergence are smoothed out, or dispersed, by acoustic 
waves, while disturbances in vorticity are merely trans- 
ported. From another point of view, the situation is 
explained by the fact that an inviscid fluid, such as the one 
we are considering here, is capable of supporting 
longitudinal or acoustic waves, but not transverse or shear 
waves. 

From the point of view of a numerical code the above 
facts imply that there exist means to damp or disperse 
extraneous perturbations of divergence, while perturbations 
of vorticity are likely to coast and persist in time. This 
is precisely the situation that we observe in Section 2 in 
relation to the Saltzman problem. 

4. CONSTRUCTING THE VERTEX VELOCITY FIELD 

4.1. Obtaining the Desired Vorticity 

In order to reconstruct the velocity field we will need to 
obtain accurate vorticity and divergence distributions. The 
problem is less severe for the divergence. We have seen from 
the Saltzman test problem example that, although there 
may be a production of erroneous divergence there is also 
a fluid dynamic mechanism, through the pressure and 
associated acoustic waves, for dispersing these errors. We 
can therefore compute cell-average divergence directly, 
using available information such as the Riemann face 
velocities, by means of 

D=(V.u)=$Jn.u*dS, (4.1) 

where V is the cell volume, and n. u* is the face Riemann 
velocity. Alternatively, the provisional vertex velocity field, 
as obtained using the least squares algorithm (Section 2.1), 
may also be considered to possess the correct divergence. 

On the other hand, errors in vorticity persist and 
accumulate in time to produce gross distortions in the 
lagrangian mesh. The test problem is irrotational, so that we 
know that any vorticity produced is extraneous. However, 
in more general situations the flow is not irrotational, and 
so we have the problem of identifying and separating the 
extraneous vorticity from that which is naturally generated 
by the flow. 

Typically, in such problems an artificial viscosity is intro- 
duced to damp the mesh distortion, and since no attempt is 
made to separate out the extraneous vorticity, it is 
inevitable that some of the intrinsic vorticity is damped as 
well. In our case, we take the approach of filtering out only 
the extraneous vorticity by attempting to calculate the 
intrinsic vorticity directly from its sources by means of a 
transport equation for the vorticity, such as Eq. (3.5), 

do -= 
dt 

-oD+(w.V)u-dxvp, 
P 

which may be written as 

dvo 
x=v (“.V)U-dxvp ) 

P 1 
where v = l/p is the specific volume, or if preferred, in the 
case of a finite volume formulation, which may be expressed 
as 

= ju(n.o)dS-JuxiVpdS. (4.2) 

In two dimensions, because only one component of vorticity 
exists, orthogonal to the plane, these equations simplify 
considerably 

do 
dt 

= wD-k -(v;xvy>, (4.3) 

2= -vk.(V;xVp), 

d 
z s 

adz= -,,.(V;xVp),, 

(4.4) 

= -jhh (4.5) 

where w is the magnitude of the single remaining vorticity 
component and k is the unit vector normal to the plane. 
These equations are further modified for numerical 
purposes, as described in Section 4.4. 

4.2. Velocity Reconstruction Methods 

a. Reconstructing the Velocity Fieldfrom the Divergence and 
Vorticity 

We are assured by A&en’s theorem [S] that, given the 
vorticity and divergence in a region of space and the normal 
velocity on the boundary of that region, we can uniquely 
reconstruct the velocity in that region. Further, the Hodge 
decomposition tells us that we can write an arbitrary vector 
field v as 

v=v,+v,, vxv,=o, v . v, = 0; 

that is, vd is irrotational and v, is solenoidal or divergence- 
free. (We will attempt to maintain the convention 
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intruduced in Section 2, whereby we use the symbol II to 
represent cell-centered velocities and v to represent vertex 
velocities. This distinction is only meaningful for discrete 
velocity fields; there will of course be no distinction in the 
differential case. In this subsection it is useful to use v for 
velocity fields even in differential equations, since they are 
intended to be used to construct vertex velocity fields.) Aris 
[ 111 shows that any irrotational vector field may be written 
as the gradient of a scalar field and any solenoidal vector 
field may be written as the curl of a solenoidal vector field. 
That is, we may always write 

v=Vcp+VxA; V.A=O, (4.6) 

or, in other words, 

Vd = vq, 
\ I 

v,=VxA; V.A=O, 

where cp is called the scalar potential and A is the vector 
potential. 

Taking v to be the desired velocity field, it remains to 
determine the potentials q and A. The potentials obviously 
satisfy the equations 

V.Vq=D, 

VxVxA=o. 
(4.8) 

Assuming that D and o are specified divergence and 
vorticity distributions, these equations may be viewed as 
determining the two potentials, given suitable boundary 
conditions. In view of the identity, 

VxVxA=V(V.A)-V.VA, 

and Eq. (4.7), the equation for the vector potential may 
rewritten in a simpler form so that the equations become 

V.Vq=D, 

V.VA = --o. 
(4.9) 

A set of boundary conditions specifying the normal 
component of velocity on the boundary is sufficient to 
completely determine the solution, according to A&en’s 
theorem [S]. Such a specification of the boundary 
conditions is not unique, but a convenient set of boundary 
conditions, equivalent to the above, is 

n . Vcp = w, w specified, 

n.VxA=Q, 
on the boundary. 

(4.10) 

583/99/3-9 

In other words, the scalar potential supports the entire 
normal velocity component on the boundary, while the 
vector potential contributes a velocity with zero normal 
component on the boundary. However, using Stokes’s 
theorem 

s n.VxAdS= A.dh, 
s P c 

applied to an arbitrarily small contour on the boundary 
surface, we can see that the above boundary conditions are 
equivalent to the simpler set 

n.Vfp=w, w specified, 

A = 0, 1 
on the boundary. 

(4.11) 

In summary, knowing the divergence D and the vorticity 
o, we must solve Poisson equations (Eq. (4.9)) for the 
scalar and vector potentials, respectively, the former with 
Neumann boundary conditions, and the latter with 
Dirichlet boundary conditions (Eq. (4.1 I)). In two dimen- 
sions, there will be two equations to solve, one for the scalar 
potential and one for the remaining single component of the 
vector potential. In three dimensions, there will be, in prin- 
ciple, only three equations to be solved since the com- 
ponents of the vector potential are not independent but are 
connected by the gauge condition (V . A = 0). Having 
obtained the potentials, the velocity is then calculated by 
the use of Eq. (4.6). 

What we have done, in effect, is to obtain the unique 
velocity field v consistent with the divergence D, obtained 
from Eq. (4.1) and therefore from Riemann velocities which 
directly determine the vertex velocity field v’ (Section 2.1) 
and the vorticity o, coming from a vorticity transport equa- 
tion such as Eq. (4.5), for example. We have therefore 
filtered out the vorticity error, do=o’-o, where the 
vorticity o’ is the one associated with the vertex velocity 
field v’. (Had we used o’ instead of o, we would have 
obtained a velocity held identical to v’, except for numerical 
errors.) 

b. Constructing the Velocity by Subtracting the Vorticity 
Error 

An alternative and computationally cheaper procedure 
involves correcting the vertex velocity field v’, obtained from 
the least-squares algorithm (Section 2.1), for example, for 
the error in vorticity only. According to our arguments, the 
errors in divergence tend to be corrected by the acoustic 
wave mechanism of the hydrodynamics, so that, in the 
previous section we computed the expected vorticity from a 
transport equation and neglected to do the same for the 
divergence. Taking this argument further, we can accept 
the irrotational part of the velocity and correct only the 
solenoidal part. 
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Assume that we compute a vorticity o’ from the vertex 
velocity v’, and a vorticity o from a transport equation, as 
above. We then have a vorticity error, A o = o’ - o. We can 
compute a solenoidal velocity correction as follows: 

Av=VxA, V.A=O, 
(4.12) 

V.VA=-do, A = 0 on the boundary, 

and, therefore, the desired velocity is 

v=v’-Av. (4.13) 

The advantage, here, is that, in two dimensions, for 
example, only one Poisson equation needs to be solved. 
Further, this equation is easier to solve when using iterative 
techniques because it satisfies Dirichlet and not Neumann 
boundary conditions. 

4.4. The Numerical Algorithm 

a. The Vorticity Equation 

We may base our discretization on Eq. (4.5), in the *form, 

d --WV= -k.(V~xV,) v 
dt 

or 

$wV= - p-l dp, 
P 

where V is the cell volume, and the gradients are assumed to 
be cell-averaged quantities. The difference is that the second 
equation is in conservation form while the first is not. The 
accurate computation of the source term in the above equa- 
tions is crucial to the success of our method. However, we 
have found that the source term in the above more-or-less 
standard form suffers from numerical errors that make its 
use problematical in practice. 

There are two primary reasons why this difftculty exists. 
In the first case, in regions of low Mach number the pressure 
is essentially constant, the gradient of pressure is very small, 
and therefore the numerical evaluation of the gradient may 
be inaccurate due to loss of precision. Second, for materials 
whose equations of state are dominated by density changes 
(very large bulk modulus of elasticity), pressure gradients 
are correspondingly dominated by contributions from den- 
sity gradients, which, however, should make no contribu- 
tion to the above vorticity source term. This large gradient 
swamps or hides the small component that does contribute 
to the source term, with a resulting loss of numerical 
accuracy. 

where the superscript n is a time index, At is the time step, 
the index k refers to a face of the vertex-centered cell 
(connecting cell centers), and A,p and A,e are density and 
internal energy differences corresponding to cell-face k, in 
an anti-clockwise direction. The cell centered values of 
Co n+l V” + ’ are obtained by simple averaging of the corre- 
sponding quantities from its four vertices. Note that we do 
not need to know the advanced time volume Vn+ ’ 
separately since, as will be seen in the next section, only the 
product of vorticity and cell volume is needed. 

b. The Laplacian Operator on a Nonuniform Mesh 

Since we are dealing with a nonuniform mesh, formu- 
lating an accurate Laplacian operator and the associated 
boundary conditions requires some care. An important 
requirement is that the operator should not possess a null 
space; in other words, there should be no functions, other 
than constants, that zero the operator. If they exist, such 
extraneous functions could then appear in the solution, 
damaging its usefulness. It is also desirable that the operator 

This difficulty may be avoided by writing the gradient of 
the pressure as 

Vp=3Vp+zVe, 
ap 

where e is the specific internal energy. Based on this, the 
source term becomes 

v&p= - 1 ap -VpxVe, 
P p2ae 

where, for an ideal gas, for example, the thermodynamic 
derivative is ap/ae = (y - 1) p. We have found that the 
above source term works well in regions of smooth flow but 
not in the presence of discontinuities such as shocks or con- 
tact surfaces, in which case the source term in conservation 
form is much better. Therefore, for the same reasons as 
above, Eq. (4.14) is written in the form 

d 

iiF- t- pp ap 
‘2dp-$p-1gde, (4.15) 

where the second integral vanishes for the case of an ideal 
gas. Because state quantities are defined at cell centers we 
define the discrete vorticity equation at cell vertices as 

A,P 

-F (p-l $>, A,e, (4.16) 



VORTICITY ERRORS IN LAGRANGIAN CODES 125 

be symmetric, in analogy with the differential operator, but 
we have found this requirement to be in conflict with other 
considerations, particularly with the need to be consistent 
with normal velocity boundary conditions on general 
curved boundaries. That is, the normal velocity at a 
boundary deduced from the solution should be the same as 
the corresponding velocity applied as a boundary condition. 
This was the primary consideration that determined the 
construction of the operator described in the following. 

The equations that we wish to discretize are the Poisson 
equations for the scalar and vector potentials (Eq. 4.9). 
Using the equation for the scalar potential as an illustration, 
we discretize it in the form 

I (4.17) 

where the integration is performed over a computational 
cell. Applying the divergence theorem, this is converted to 

jn%pdS= jwdS, (4.18) 

where n is the unit outward normal on each cell face, n . v is 
the normal component of velocity on a cell face, and the 
integration is over the faces of the cell. Considering a typical 
mesh geometry in the neighborhood of a cell, illustrated in 
Fig. 7, we define a secondary mesh whose vertices are partly 
the computational cell vertices and partly the cell centers. 
The cell-center coordinates are defined to be 

cell 
with face ab 

FIG. 7. The secondary cell used for the construction of face gradients. 

where ri are the cell-vertex coordinates. We assume that the 
potentials cp are located at the cell-centers. Dropping the 
circumflex notation, a typical secondary-mesh cell has 
vertices at cell-centers ri and ri with potentials (pi and qj, 
and cell-vertices r. and rb with potentials cpO and (Pi, 
interpolated from surrounding cell-center potentials, as 
described later. The gradient of the potential is conveniently 
obtained from the cell area-average 

vq=f j ncp dA. (4.19) 
cell 

With the notation rij = ri - rj, this becomes 

Vo=&kx C(cpi-cPi)r,,+((Pb-(Po)rjil, (4.20) 

where k is the unit normal orthogonal to the plane, and 2A 
is twice the cell area, given by 

2A = k . (rii x rob). 

The outwardly directed surface area is 

ndS=R,,kxr,,, (4.21) 

where R,, is the radial coordinate of the face center in 
axisymmetric geometry (R,, = 1 for a Cartesian mesh). 

The method of interpolation to obtain vertex potentials is 
closely related to one described in the CAVEAT manual 
[S]. Consider a typical vertex point a and its four sur- 
rounding cell points. The interpolation may be expressed as 

cp,’ i ci(Pi, (4.22) 
i= 1 

where 

Nk j; a) 41, k; a) 
ci = A(k, j; i) A(f, k; i) ’ 

46 B; Y) = by - XJY, - Yp) - by - x&Y, - y,), 

and i=1,2,3,4;j=i+1=2,3,4,1; k=i+2=3,4,1,2; 
I = i + 3 = 4, 1,2, 3; that is, i, j, k, 1 represent the four cell 
points in cyclic order. The coefficients ci may be viewed as 
originating from “shape” functions associated with the 
quadrilateral formed by the four cell points. 

Combining these results, the Laplacian operator 
associated with cell i may be expressed as 

LicP= i aucp,, (4.23) 
J=l 
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where av is a coupling coefficient between points i andj, and 
j ranges over all nine points in the neighborhood of point i. 
The coupling coefficients av are related because 

jgl ali = 0, 

due to the vanishing of the operator for constants, so that 
the coefficient aij may be eliminated, and Eq. (4.23) may be 
alternatively expressed as 

8 

LicP= C a,i(V,-vi), (4.24) 
j=l,j#i 

where the summation is over only the eight neighbors of 
point i (the reason for the coupling coefficient terminology 
now becomes apparent). On a simple orthogonal mesh the 
operator reduces to the standard five-point Laplacian 
operator, which is known to be free of a null space. The 
operator is a matrix operator, L = {au}; the matrix is non- 
symmetric (au # aj,) on a nonuniform mesh. 

The right-hand sides are evaluated assuming that the 
divergence and the vorticity are constant within cell i, so 
that the equations become 

t aq(cpj-cp,)= V,D,= i (n.v), R,&, 
j= I, j#i k=l 

i 

(4.25) 

ati(Aj--Aj) = - Vp,, 
j=l,j#i 

where (pi is the scalar potential, Ai is the vector potential, Di 
is the divergence, oi is the vorticity, Vi is the cell volume (or 
area, in the Cartesian case) of cell i, R, is the pseudo-radius 
of Eq. (4.21), and & is the length of face k. 

c. Boundary Conditions 

Strictly speaking, the above equations apply only in the 
interior of the mesh, away from the boundaries. We follow 
conventional finite difference practice and view Eq. (4.24) as 
a numerical “stencil” for the operator, applying boundary 
conditions explicitly to the numerical equations. The 
boundary conditions must be consistent with the manner in 
which the right-hand side of Eq. (4.25) is evaluated. Noting 
the structure of Eq. (4.18), we observe that there is a one-to- 
one correspondence between face potential gradients and 
face normal velocity components, making this consistency 
easy to achieve. Indeed, as pointed out earlier, this was the 
main reason for basing the discretization on Eq. (4.18). 

For convenience in specifying the boundary conditions 
we assume that the mesh is surrounded by a layer of 

fictitious or “ghost” cells. We are free to locate the ghost cell 
point in a relatively arbitrary manner. Thus, cell points are 
reflected orthogonally across the boundary face, since this 
corresponds to the mesh being locally orthogonal at the 
boundary. For a locally orthogonal mesh the gradient given 
by Eq. (4.20) becomes a function of only the two cell-point 
potentials, cpi and (Pi, where vi is the interior point potential 
and (Pb is the boundary or ghost point potential. The 
boundary conditions then become, simply, 

(Pb = ‘Pi? symmetry, 

(Pb= -(Pi, reflective, or zero potential, 

(Pb=(Pi+d$W specified normal gradient, 

where d, is the distance from the interior to the boundary 
point, and w is the specified normal gradient (normal com- 
ponent of velocity in the scalar potential case). 

d. Solution Method 

We have chosen to use a standard direct method [ 123 for 
solving our matrix equations because we are primarily 
interested in demonstrating the principle of our method and 
less in its efficiency. Further, because we are applying the 
method to two-dimensional problems only, and because 
iterative methods are less attractive due to the nonsymmetry 
of our matrices, a direct method becomes both feasible and 
attractive. However, care must be taken because a direct 
method of solution of the Poisson equation for the scalar 
potential may break down. The scalar potential equation is 
in the form of a Neumann problem, implying that the 
matrix possesses a zero eigenvalue (associated with a 
constant potential). That is, the potential is indeterminate 
up to a constant. Nevertheless, a solution exists provided a 
consistency condition, namely, 

s D dz = 
s 

n.vdS, 
domain boundary 

is satisfied. Fortunately, this consistency condition is 
implicitly built into the problem formulation, based on 
Eq. (4.18). However, a direct method would still fail, 
because, strictly speaking, the system is singular. An easy 
solution is to regularize the system by pinning the potential 
at some point in the mesh to a fixed value; in effect removing 
one equation from the system. 

e. Vertex Velocities 

Following the solution for the potentials, the vertex 
velocities are obtained by means of Eq. (4.6). Defining a 
secondary cell whose four vertices are the cell centers sur- 
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FIG. 8. Lagrangian mesh, velocity vectors, and density contours for the Saltzman problem, obtained using method (a) applied to the CAVEAT code, 
at time r = 0.5. 

FIG. 9. Lagrangian mesh, velocity vectors, and density contours for the Sal&man problem, obtained using method (a) applied to the CAVEAT code, 
at time t = 0.7. 
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FIG. 10. Lagrangian mesh, velocity vectors, and density contours for the Saltzman problem, obtained using method (b) applied to the CAVEAT 
code. at time t = 0.5. 
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FIG. 11. Lagrangian mesh, velocity vectors, and density contours for the Saltzman problem, obtained using method (b) applied to the CAVEAT 
code, at time t = 0.7. 
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(a) t=0.8 

(b) t=0.9 

FIG. 12. Lagrangian mesh obtained using method (b) applied to the CAVEAT code, at times t = 0.8 and 0.9, shortly after the first and second shock 
reflections, respectively. 
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rounding vertex a, the vertex velocity at point a is obtained 
from cell-averaged gradients analogous to Eq. (4.20), 

v,=Vq+VxA, 

V~=~kxI(~~--i)rii+(Oli--Bx)r~;l, (4.26) 

VxA=&[(Ai-Ai)r,,+(A,---A,)rii], 

where i, k, j, 1 are the cell points in cyclic order, and 

2A = k . (rii x rkl). 

5. COMPUTATIONAL EXAMPLES 

5.1. The Saltzman Problem 

The Saltzman problem was described in Section 2 and the 
results using the standard CAVEAT method are shown in 
Figs. 3 and 4. The corresponding results using method (a) 
are shown in Figs. 8 and 9, and using method (b) they are 
shown in Figs. 10 and 11. The improvement is striking. It 
may be noted that both of the new methods give equally 
good results. However, in view of the fact that method (a) 
is more complex and more costly, we will henceforth restrict 
our attention to method (b) only. 

Recalling that the standard calculation failed due to mesh 
tangling at approximately the time of the first shock reflec- 
tion, we show the results of method (b) calculations in 
Fig. 12 at t = 0.8, which is a time shortly after the first reflec- 
tion, and at t = 0.9, which is a time shortly after second 
reflection, or the first reflection from the piston. 

The Saltzman problem is insufficient to demonstrate the 
wider utility of the method because of the absence of intrin- 
sic vorticity. To complete the demonstration we need a test 
problem in which the flow field generates nonzero vorticity. 

5.2. A Shock Refraction Problem 

It is well known that a vortex sheet is generated by the 
interaction of a shock wave with an inclined interface which 

TABLE I 

Nominal Test Problem Conditions (Steady-State Frame) 

Region 1 2 3 4 5 

Angle (deg.) 60 131.02 21.90 90.96 56.12 

Density 1 1.5 4.29 2.93 2.67 

Pressure 1 1 5.15 5.15 4.50 

Mach number 2.31 2.83 1.49 0.94 1.06 

Velocity (magn.) 2.13 2.73 1.93 1.48 1.63 

possesses a density discontinuity [13]. Because such inter- 
actions may be very complex, it is convenient to work with 
the so-called “regular” refraction in which all waves are 
shock waves, since this case may be easily studied using 
shock-polar analysis. The problem is illustrated in Fig. 13. 

For computational convenience we have chosen an inter- 
face between two ideal gases, both with y = 1.4. The nominal 
conditions specifying our test problem are: incident shock 
Mach number (laboratory frame) M, = 2, interface density 
ratio p2/p1 = 1.5, and shock-interface angle of incidence 
=60”. The resulting shock-polar solution is given in 
Table I. 

The initial mesh is composed of two adjacent regions, 
each initially containing gases of different densities but 
equal pressures. Region 1 is a 36 x 30 mesh, with the left 
boundary vertical and the right boundary slanted at 60” to 
represent the interface. Region 2 is a 40 x 30 mesh uniformly 
slanted at 60”. The upper and lower boundaries are reflec- 
tive, and the left boundary is a piston, which moves to the 
right with a velocity of 1.48 units, driving a Mach 2 shock 
into region 1. Note, however, that shortly after the incident 
shock reaches the interface a weak reflected shock is formed 
which modifies the conditions in front of the piston, making 
the incident shock unsteady, so that the Mach number is 
only nominally equal to 2. 

The shock is allowed to propagate for a time t = 1.3, and 
the results showing the lagrangian mesh, the velocity vec- 
tors, and the density and pressure contours are given in 
Figs. 14 and 15 for the standard CAVEAT method and for 
method (b), respectively. The improvement is obvious from 
a qualitative examination of the mesh. The mesh in Fig. 14 
is noticeably distorted, particularly in the vicinity of the 

Incident Shock 

FIG. 13. The shock refraction test problem. 
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FIG. 14. Lagrangian mesh, velocity vectors, density, and pressure contours for the shock refraction problem, obtained with the standard CAVEAT 
code, at time I = 1.3. 
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FIG. 15. Lagrangian mesh, velocity vectors, density, and pressure contours for the shock refraction problem, obtained using method (b) applied to 
the CAVEAT code, at time r = 1.3. 
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TABLE II 

A Comparison of Computed versus Estimated Results 
for Regions 3 and 4 

Region 3 Region 4 

Computed Estimated Computed Estimated 

Standard CAVEAT (M, = 1.987) 

Pressure 4.99 5.06 5.02 5.06 
Density 4.24 4.25 2.85 2.91 
Horiz. velocity 1.22 1.30 1.49 1.54 
Vert. velocity -0.24 -0.26 0.13 0.12 

Method(b) (M, = 1.959) 

Pressure 4.99 4.89 5.09 4.89 
Density 4.17 4.18 2.91 2.85 
Horiz. velocity 1.25 1.26 1.45 1.51 
Vert. velocity -0.17 -0.25 0.15 0.11 

lower part of the interface where the mesh is on the verge of 
tangling. Both computations show the shear in the horizon- 
tal mesh lines at the interface due to the presence of the vor- 
tex sheet, although this is masked in the CAVEAT calcula- 
tion by the much greater distortion. This severe mesh distor- 
tion appears to be associated with a pronounced curvature 
of the interface, in contrast to the rather undistorted shape 
of the interface in Fig. 15. Although strictly speaking it is not 
possible to say which is the more correct because of the 
unknown interaction with the bottom boundary, the 
pressure contours suggest that the regular or Mach-stem 
reflection from the bottom boundary is so weak that it is 
unlikely to bend the interface. It is possible to make a rough 
quantitative comparison of the two computations, however, 
based on a shock-polar calculation using an estimated 
effective incident shock Mach number (the effective Mach 
number is estimated from the actual pressure ratio across 
the shock). The results are shown in Table II. 

These results do not permit one to distinguish between 
the two computations, but method (b) is clearly superior 
from the point of view of rubustness and the quality of the 
lagrangian mesh. 

6. SUMMARY AND DISCUSSION 

We have shown that mesh distortion in multidimensional 
lagrangian codes is at least partly caused by a spurious 
vorticity, introduced by numerical or discretization errors. 
On the other hand, we have found that there is an acoustic 
mechanism which appears to correct the corresponding 
divergence errors. Based on these findings, we introduced 
two methods for reconstructing the correct mesh velocity 

from the computed true or intrinsic vorticity, while 
assuming that the divergence was correct. Both methods 
were found to be equally successful in eliminating the 
extraneous mesh distortion, although the second method, 
involving a divergence-free velocity correction, was much 
more efficient. The key to the success of both methods 
turned out to be an accurate vorticity transport equation in 
conservation form, in which a particular form of the source 
term, analogous to the cross product of the gradients of 
density and internal energy, appears to be essential. 

The standard approach to the problem that we have 
addressed is by the use of artificial viscosity. Many clever 
and effective artificial viscosities have been developed 
[2, 31. Artificial viscosities were originally developed for the 
purpose of resolving shock waves on discrete meshes, and 
for this there is ample physical and numerical justification. 
This type of artificial viscosity should be a bulk viscosity 
and it therefore should not affect vorticity. There is much 
less justification when artificial viscosities are used for the 
purpose of controlling mesh distortion. This type is usually 
a form of shear viscosity and it damps vorticity. If the mesh 
distortion is caused by the “null space” problem alluded 
to in the Introduction, then an artificial viscosity tuned 
to damp the particular mode in question would be 
appropriate. However, when the distortion is caused by an 
extraneous vorticity then the use of artificial vorticity runs 
the risk of damping both the extraneous and the intrinsic 
vorticity. On the other hand, artificial viscosity methods 
have the overwhelming advantage of being simple and 
inexpensive. We do not view the methods developed here to 
be competitive with artificial viscosity type methods in this 
regard, but only as a step towards developing improved 
artificial-viscosity-like methods in the future. Our primary 
purpose had been to understand the mechanism behind this 
common type of lagrangian error and to experiment with 
methods specifically aimed at correcting it. In this paper 
we have been interested primarily in demonstrating the 
principle of the method rather than in its efficiency. Future 
developments may lead to improvements which would 
make the method more competitive and therefore more 
artificial-viscosity-like in the sense of being explicit and, 
therefore, simpler and cheaper. A substitution of an efficient 
iterative method for the solution of the Poisson equation 
would be an immediate improvement. Moreover, one may 
look forward to further developments which would make 
the method fully explicit and more practical, such as the 
use of partial convergence with one or two iterations of an 
effective iterative method. 
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